Boost the Circularly Polarized Phosphorescence of Chiral Organometallic Platinum Complexes by Hierarchical Assembly into Fibrillar Networks

Author:

Gong Zhong‐Liang1ORCID,Dan Ti‐Xiong12,Chen Jian‐Cheng12,Li Zhong‐Qiu1,Yao Jiannian12,Zhong Yu‐Wu12ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Photochemistry CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

2. School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractCircularly polarized luminescence (CPL)‐active molecular materials have drawn increasing attention due to their promising applications for next‐generation display and optoelectronic technologies. Currently, it is challenging to obtain CPL materials with both large luminescence dissymmetry factor (glum) and high quantum yield (Φ). A pair of enantiomeric N N C‐type Pt(II) complexes (L/D)‐1 modified with chiral Leucine methyl ester are presented herein. Though the solutions of these complexes are CPL‐inactive, the spin‐coated thin films of (L/D)‐1 exhibit giantly‐amplified circularly polarized phosphorescences with |glum| of 0.53 at 560 nm and Φair of ~50 %, as well as appealing circular dichroism (CD) signals with the maximum absorption dissymmetry factor |gabs| of 0.37–0.43 at 480 nm. This superior CPL performance benefits from the hierarchical formation of crystalline fibrillar networks upon spin coating. Comparative studies of another pair of chiral Pt(II) complexes (L/D)‐2 with a symmetric N C N coordination mode suggest that the asymmetric N N C coordination of (L/D)‐1 are favorable for the efficient exciton delocalization to amplify the CPL performance. Optical applications of the thin films of (L/D)‐1 in CPL‐contrast imaging and inducing CP light generation from achiral emitters and common light‐emitting diode lamps have been successfully realized.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3