An Optochemical Oxygen Scavenger Enabling Spatiotemporal Control of Hypoxia

Author:

Ieda Naoya1ORCID,Sawada Masato23ORCID,Oguchi Runa1,Itoh Masato1,Hirakata Seina4,Saitoh Daisuke1,Nakao Akito5ORCID,Kawaguchi Mitsuyasu1ORCID,Sawamoto Kazunobu23ORCID,Yoshihara Toshitada4ORCID,Mori Yasuo5,Nakagawa Hidehiko1ORCID

Affiliation:

1. Graduate School of Pharmaceutical Sciences Nagoya City University 3-1, Tanabe-dori, Mizuho-ku, Nagoya-shi Aichi 467-8603 Japan

2. Graduate School of Medical Sciences Nagoya City University 1, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya-shi Aichi 467-8601 Japan

3. Division of Neural Development & Regeneration National Institute for Physiological Sciences 38, Nishigonaka, Myodaiji-cho, Okazaki-shi Aichi 444-8585 Japan

4. Graduate School of Science and Technology Gunma University 1-5-1, Tenjin-cho, Kiryu-shi Gunma 376-8515 Japan

5. Graduate School of Engineering Kyoto University Katsura, Katsura, Nishikyo-ku Kyoto 615-8510 Japan

Abstract

AbstractWe present an optochemical O2 scavenging system that enables precise spatiotemporal control of the level of hypoxia in living cells simply by adjusting the light intensity in the illuminated region. The system employs rhodamine containing a selenium or tellurium atom as an optochemical oxygen scavenger that rapidly consumes O2 by photochemical reaction with glutathione as a coreductant upon visible light irradiation (560–590 nm) and has a rapid response time, within a few minutes. The glutathione‐consuming quantum yields of the system were calculated as about 5 %. The spatiotemporal O2 consuming in cultured cells was visualized with a hypoxia‐responsive fluorescence probe, MAR. Phosphorescence lifetime imaging was applied to confirmed that different light intensities could generate different levels of hypoxia. To illustrate the potential utility of this system for hypoxia research, we show that it can spatiotemporally control calcium ion (Ca2+) influx into HEK293T cells expressing the hypoxia‐responsive Ca2+ channel TRPA1.

Funder

Japan Society for the Promotion of Science

ACT-X

Nagoya City University

Japan Agency for Medical Research and Development

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3