Affiliation:
1. College of Chemistry and Molecular Sciences Wuhan University Hubei 430072 Wuhan P. R. China
2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Hubei 430073 Wuhan P. R. China
3. Institute of High Energy Physics Chinese Academy of Science Beijing 100049 P. R. China
Abstract
AbstractThe electrolyte cations‐dependent kinetics have been widely observed in many fields of electrocatalysis, however, the exact mechanism of the influence on catalytic performance is still a controversial topic of considerable discussion. Herein, combined with operando X‐ray diffraction (XRD) and high‐resolution transmission electron microscopy (HRTEM), we verify that the electrolyte cations could intercalate into the layer of pristine CoOOH catalyst during the oxygen evolution reaction (OER) process, while the bigger cations lead to enlarged interlayer spacing and increased OER activity, following the order Cs+>K+>Na+>Li+. X‐ray absorption spectroscopy (XAS), in situ Raman, in situ Ultraviolet‐visible (UV/Vis) spectroscopy, in situ XAS spectroscopy, cyclic voltammetry (CV), and theoretical calculations reveal that the intercalation of electrolyte cations efficiently modify the oxidation states of Co by enlarging the Co−O bonds, which in turn enhance the d‐band center of Co, optimize the adsorption strength of oxygen intermediates, facilitate the formation of OER active Co(IV) species, and reduce the energy barrier of the rate‐determing step (RDS), thereby enhancing the OER activity. This work not only provides an informative picture to understand the complicated dependence of OER kinetics on electrolyte cations, but also sheds light on understanding the mechanism of other electrolyte cation‐targeted electrocatalysis.
Funder
National Natural Science Foundation of China
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献