Chromium‐ and Metal‐Reductant‐Free Asymmetric Nozaki–Hiyama–Kishi (NHK) Reaction Enabled by Metallaphotoredox Catalysis

Author:

Gu Pei1,Ding Linlin1,Fang Xiaowu1,Zhu Jie1,Kang Shuyu1,Wu Bingcheng1,Zhang Jie1,Zhao Yue1,Shi Zhuangzhi123ORCID

Affiliation:

1. State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center (ChemBIC) School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 China

2. School of Chemistry and Materials Science Nanjing Normal University 210023 Nanjing China

3. School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China

Abstract

AbstractChiral allylic alcohols are highly prized in synthetic chemistry due to their versatile reactivity stemming from both alkenyl and hydroxyl functionalities. While the Nozaki–Hiyama–Kishi (NHK) reaction is a widely used method for the synthesis of allylic alcohols, it suffers from drawbacks such as the use of toxic chromium salts, high amounts of metal reductants, and poor enantiocontrol. To address these limitations, we present a novel approach involving a metallaphotoredox‐catalyzed asymmetric NHK reaction for the production of chiral allylic alcohols. This method marries alkenyl (pseudo)halides with aldehydes, leveraging a synergistic blend of a chiral nickel catalyst and a photocatalyst. This innovative technique enables both oxidative addition and insertion just using nickel, diverging significantly from the conventional NHK reaction pathway mediated by nickel and chromium salts. The adoption of this methodology holds immense promise for crafting a spectrum of intricate compounds, particularly those of significance in pharmaceuticals. Detailed experimental investigations have shed light on the metallaphotoredox process, further enhancing our understanding and enabling further advancements.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3