Electrochemical Nickel‐Catalyzed Hydrogenation

Author:

Li Liubo1,Wang Xinyi12,Fu Niankai12ORCID

Affiliation:

1. Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China

2. University of Chinese Academy of Sciences Beijing 100049 China

Abstract

AbstractOlefin hydrogenation is one of the most important transformations in organic synthesis. Electrochemical transition metal‐catalyzed hydrogenation is an attractive approach to replace the dangerous hydrogen gas with electrons and protons. However, this reaction poses major challenges due to rapid hydrogen evolution reaction (HER) of metal‐hydride species that outcompetes alkene hydrogenation step, and facile deposition of the metal catalyst at the electrode that stalls reaction. Here we report an economical and efficient strategy to achieve high selectivity for hydrogenation reactivity over the well‐established HER. Using an inexpensive and bench‐stable nickel salt as the catalyst, this mild reaction features outstanding substrate generality and functional group compatibility, and distinct chemoselectivity. In addition, hydrodebromination of alkyl and aryl bromides could be realized using the same reaction system with a different ligand, and high chemoselectivity between hydrogenation and hydrodebromination could be achieved through ligand selection. The practicability of our method has been demonstrated by the success of large‐scale synthesis using catalytic amount of electrolyte and a minimal amount of solvent. Cyclic voltammetry and kinetic studies were performed, which support a NiII/0 catalytic cycle and the pre‐coordination of the substrate to the nickel center.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3