Affiliation:
1. School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China
2. Tangshan Research Institute Beijing Institute of Technology Beijing 100081 China
3. Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing 100081 China
Abstract
AbstractA general approach to constructing room temperature phosphorescence (RTP) materials involves the incorporation of a phosphorescent emitter into a rigid host or polymers with high glass transition temperature. However, these materials often suffer from poor processability and suboptimal mechanical properties, limiting their practical applications. In this work, we developed benzothiadiazole‐based dialkene (BTD‐HEA), a multifunctional phosphorescent emitter with a remarkable yield of intersystem crossing (ΦISC, 99.83 %). Its high triplet exciton generation ability and dialkene structure enable BTD‐HEA to act as a photoinitiator and crosslinker, efficiently initiating the polymerization of various monomers within 120 seconds. A range of flexible phosphorescence gels, including hydrogels, organogels, ionogels, and aerogels were fabricated, which exhibit outstanding stretchability and recoverability. Furthermore, the unique fluorescent‐phosphorescent colorimetric properties of the gels provide a more sensitive method for the visual determination of the polymerization process. Notably, the phosphorescent emission intensity of the hydrogel can be increased by the formation of ice, allowing for the precise detection of hydrogel freezing. The versatility of this emitter paves the way for fabricating various flexible phosphorescence gels with diverse morphologies using microfluidics, film‐shearing, roll coating process, and two/three‐dimensional printing, showcasing its potential applications in the fields of bioimaging and bioengineering.
Funder
Natural Science Foundation of Beijing Municipality