Multi‐Functional Integration of Phosphor, Initiator, and Crosslinker for the Photo‐Polymerization of Flexible Phosphorescent Polymer Gels

Author:

Cao Yanyan1,Wang Dan12,Zhang Yongfeng1,Li Gengchen1,Gao Chong2,Li Wei2,Chen Xiaoting12,Chen Xiaofei12,Sun Peng3,Dong Yuping1,Cai Zhengxu12ORCID,He Zhiyuan12

Affiliation:

1. School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China

2. Tangshan Research Institute Beijing Institute of Technology Beijing 100081 China

3. Advanced Research Institute of Multidisciplinary Sciences Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractA general approach to constructing room temperature phosphorescence (RTP) materials involves the incorporation of a phosphorescent emitter into a rigid host or polymers with high glass transition temperature. However, these materials often suffer from poor processability and suboptimal mechanical properties, limiting their practical applications. In this work, we developed benzothiadiazole‐based dialkene (BTD‐HEA), a multifunctional phosphorescent emitter with a remarkable yield of intersystem crossing (ΦISC, 99.83 %). Its high triplet exciton generation ability and dialkene structure enable BTD‐HEA to act as a photoinitiator and crosslinker, efficiently initiating the polymerization of various monomers within 120 seconds. A range of flexible phosphorescence gels, including hydrogels, organogels, ionogels, and aerogels were fabricated, which exhibit outstanding stretchability and recoverability. Furthermore, the unique fluorescent‐phosphorescent colorimetric properties of the gels provide a more sensitive method for the visual determination of the polymerization process. Notably, the phosphorescent emission intensity of the hydrogel can be increased by the formation of ice, allowing for the precise detection of hydrogel freezing. The versatility of this emitter paves the way for fabricating various flexible phosphorescence gels with diverse morphologies using microfluidics, film‐shearing, roll coating process, and two/three‐dimensional printing, showcasing its potential applications in the fields of bioimaging and bioengineering.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3