Accelerated Redox Reactions Enable Stable Tin‐Lead Mixed Perovskite Solar Cells

Author:

He Dongxu1ORCID,Chen Peng1ORCID,Hao Mengmeng1,Lyu Miaoqiang1ORCID,Wang Zhiliang1ORCID,Ding Shanshan1,Lin Tongen1,Zhang Chengxi1,Wu Xin2ORCID,Moore Evan2ORCID,Steele Julian A.13ORCID,Namdas Ebinazar B.3ORCID,Bai Yang45,Wang Lianzhou1ORCID

Affiliation:

1. School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia 4072 Queensland Australia

2. School of Chemistry and Molecular Biosciences The University of Queensland St Lucia 4072 Queensland Australia

3. School of Mathematics and Physics The University of Queensland St Lucia 4072 Queensland Australia

4. Faculty of Materials Science and Energy Engineering/Institute of Technology for Carbon Neutrality Shenzhen Institute of Advanced Technology Chinese Academy of Sciences 518055 Shenzhen Guangdong China

5. Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality 518055 Shenzhen Guangdong China

Abstract

AbstractThe facile oxidation of Sn2+ to Sn4+ poses an inherent challenge that limits the efficiency and stability of tin‐lead mixed (Sn−Pb) perovskite solar cells (PSCs) and all‐perovskite tandem devices. In this work, we discover the sustainable redox reactions enabling self‐healing Sn−Pb perovskites, where their intractable oxidation degradation can be recovered to their original state under light soaking. Quantitative and operando spectroscopies are used to investigate the redox chemistry, revealing that metallic Pb0 from the photolysis of perovskite reacts with Sn4+ to regenerate Pb2+ and Sn2+ spontaneously. Given the sluggish redox reaction kinetics, V3+/V2+ ionic pair is designed as an effective redox shuttle to accelerate the recovery of Sn−Pb perovskites from oxidation. The target Sn−Pb PSCs enabled by V3+/V2+ ionic pair deliver an improved power conversion efficiency (PCE) of 21.22 % and excellent device lifespan, retaining nearly 90 % of its initial PCE after maximum power point tracking under light for 1,000 hours.

Funder

Australian Research Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3