Exploitation of Catalytic Dyads by Short Peptide‐Based Nanotubes for Enantioselective Covalent Catalysis

Author:

Singh Abhishek1,Goswami Surashree1,Singh Priyanshu1,Das Dibyendu1ORCID

Affiliation:

1. Department of Chemical Sciences & Centre for Advanced Functional Materials Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur West Bengal 741246 India

Abstract

AbstractExtant enzymes with precisely arranged multiple residues in their three‐dimensional binding pockets are capable of exhibiting remarkable stereoselectivity towards a racemic mixture of substrates. However, how early protein folds that possibly featured short peptide fragments facilitated enantioselective catalytic transformations important for the emergence of homochirality still remains an intriguing open question. Herein, enantioselective hydrolysis was shown by short peptide‐based nanotubes that could exploit multiple solvent‐exposed residues to create chiral binding grooves to covalently interact and subsequently hydrolyse one enantiomer preferentially from a racemic pool. Single or double‐site chiral mutations led to opposite but diminished and even complete loss of enantioselectivities, suggesting the critical roles of the binding enthalpies from the precise localization of the active site residues, despite the short sequence lengths. This work underpins the enantioselective catalytic prowess of short peptide‐based folds and argues their possible role in the emergence of homochiral chemical inventory.

Funder

Science and Engineering Research Board

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3