Nano Proteolysis Targeting Chimeras (PROTACs) with Anti‐Hook Effect for Tumor Therapy

Author:

Zhang Ni‐Yuan12,Hou Da‐Yong134,Hu Xing‐Jie15,Liang Jian‐Xiao12,Wang Man‐Di12,Song Zhang‐Zhi1,Yi Li12,Wang Zhi‐Jia134,An Hong‐Wei12,Xu Wanhai34,Wang Hao125ORCID

Affiliation:

1. CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology (NCNST) Beijing 100190 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. Department of Urology Harbin Medical University Cancer Hospital, Heilongjiang Key Laboratory of Scientific Research in Urology Harbin 150001 China

4. NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy Harbin Medical University Harbin 150001 China

5. Henan Institute of Advanced Technology Zhengzhou University Zhengzhou 450052 China

Abstract

AbstractProteolysis targeting chimera (PROTAC) is an emerging pharmacological modality with innovated post‐translational protein degradation capabilities. However, off‐target induced unintended tissue effects and intrinsic “hook effect” hinder PROTAC biotechnology to be maturely developed. Herein, an intracellular fabricated nano proteolysis targeting chimeras (Nano‐PROTACs) modality with a center‐spoke degradation network for achieving efficient dose‐dependent protein degradation in tumor is reported. The PROTAC precursors are triggered by higher GSH concentrations inside tumor cells, which subsequently in situ self‐assemble into Nano‐PROTACs through intermolecular hydrogen bond interactions. The fibrous Nano‐PROTACs can form effective polynary complexes and E3 ligases degradation network with multi‐binding sites, achieving dose‐dependent protein degradation with “anti‐hook effect”. The generality and efficacy of Nano‐PROTACs are validated by degrading variable protein of interest (POI) such as epidermal growth factor receptor (EGFR) and androgen receptor (AR) in a wide‐range dose‐dependent manner with a 95 % degradation rate and long‐lasting potency up to 72 h in vitro. Significantly, Nano‐PROTACs achieve in vivo dose‐dependent protein degradation up to 79 % and tumor growth inhibition in A549 and LNCap xenograft mice models, respectively. Taking advantages of in situ self‐assembly strategy, the Nano‐PROTACs provide a generalizable platform to promote precise clinical translational application of PROTAC.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3