Ultralow Catalytic Loading for Optimised Electrocatalytic Performance of AuPt Nanoparticles to Produce Hydrogen and Ammonia

Author:

Bezerra Leticia S.1,Brasseur Paul1,Sullivan‐Allsop Sam2,Cai Rongsheng2,da Silva Kaline N.1,Wang Shiqi1,Singh Harishchandra3,Yadav Ashok K.4,Santos Hugo L. S.1,Chundak Mykhailo1,Abdelsalam Ibrahim1,Heczko Vilma J.1,Sitta Elton5,Ritala Mikko1,Huo Wenyi67ORCID,Slater Thomas J. A.8,Haigh Sarah J.2,Camargo Pedro H. C.1ORCID

Affiliation:

1. Department of Chemistry University of Helsinki A.I. Virtasen aukio 1, PO Box 55 FIN-0014 Helsinki Finland

2. Department of Materials University of Manchester Manchester M13 9PL United Kingdom

3. Nano and Molecular Systems Research Unit University of Oulu Oulu FIN-90014 Finland

4. Synchrotron SOLEIL Beamline SIRIUS, Saint-Aubin F-91192 Gif sur Yvette France

5. Department of Chemistry Federal University of Sao Carlos Rod. Washington Luis, km 235 Sao Carlos 13565-905 Brazil

6. College of Mechanical and Electrical Engineering Nanjing Forestry University. Nanjing 210037 P. R. China

7. NOMATEN Centre of Excellence National Centre for Nuclear Research Otwock 05-400 Poland

8. Cardiff Catalysis Institute, School of Chemistry Cardiff University Cardiff CF10 3AT United Kingdom

Abstract

AbstractThe hydrogen evolution and nitrite reduction reactions are key to producing green hydrogen and ammonia. Antenna–reactor nanoparticles hold promise to improve the performances of these transformations under visible‐light excitation, by combining plasmonic and catalytic materials. However, current materials involve compromising either on the catalytic activity or the plasmonic enhancement and also lack control of reaction selectivity. Here, we demonstrate that ultralow loadings and non‐uniform surface segregation of the catalytic component optimize catalytic activity and selectivity under visible‐light irradiation. Taking Pt−Au as an example we find that fine‐tuning the Pt content produces a 6‐fold increase in the hydrogen evolution compared to commercial Pt/C as well as a 6.5‐fold increase in the nitrite reduction and a 2.5‐fold increase in the selectivity for producing ammonia under visible light excitation relative to dark conditions. Density functional theory suggests that the catalytic reactions are accelerated by the intimate contact between nanoscale Pt‐rich and Au‐rich regions at the surface, which facilitates the formation of electron‐rich hot‐carrier puddles associated with the Pt‐based active sites. The results provide exciting opportunities to design new materials with improved photocatalytic performance for sustainable energy applications.

Funder

Jane ja Aatos Erkon Säätiö

Academy of Finland

HELSINGIN YLIOPISTON KESTäVYYSTIETEEN INSTITUUTTI

Engineering and Physical Sciences Research Council

HORIZON EUROPE European Research Council

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

HORIZON EUROPE European Innovation Council

European Regional Development Fund

Canada Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Canadian Institutes of Health Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3