Accelerated Surface Reconstruction through Regulating the Solid‐Liquid Interface by Oxyanions in Perovskite Electrocatalysts for Enhanced Oxygen Evolution

Author:

Tang Ying1,Wu Chao12,Zhang Qi3,Zhong Haoyin3,Zou Anqi1,Li Junhua1,Ma Yifan3,An Hang3,Yu Zhigen4,Xi Shibo2,Xue Junmin3,Wang Xiaopeng13,Wu Jiagang1ORCID

Affiliation:

1. College of Materials Science and Engineering Sichuan University 610065 Chengdu China

2. Institute of Sustainability for Chemical, Energy and Environment (ISCE2) Agency for Science, Technology and Research 627833 Singapore Republic of Singapore

3. Department of Materials Science and Engineering National University of Singapore 117575 Singapore Republic of Singapore

4. Institute of High Performance Computing Agency for Science, Technology and Research 138632 Singapore Republic of Singapore

Abstract

AbstractA comprehensive understanding of surface reconstruction was critical to developing high performance lattice oxygen oxidation mechanism (LOM) based perovskite electrocatalysts. Traditionally, the primary determining factor of the surface reconstruction process was believed to be the oxygen vacancy formation energy. Hence, most previous studies focused on optimizing composition to reduce the oxygen vacancy formation energy, which in turn facilitated the surface reconstruction process. Here, for the first time, we found that adding oxyanions (SO42−, CO32−, NO3) into the electrolyte could effectively regulate the solid–liquid interface, significantly accelerating the surface reconstruction process and enhancing oxygen evolution reaction (OER) activities. Further studies indicated that the added oxyanions would adsorb onto the solid–liquid interface layer, disrupting the dynamic equilibrium between the adsorbed OH ions and the OH ions generated during surface reconstruction process. As such, the OH ions generated during surface reconstruction process could be more readily released into the electrolyte, thereby leading to an acceleration of the surface reconstruction. Thus, it was expected that our finding would provide a new layer of understanding to the surface reconstruction process in LOM‐based perovskite electrocatalysts.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Sichuan Province

Ministry of Education - Singapore

State Key Laboratory of Materials- Oriented Chemical Engineering

Publisher

Wiley

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3