Affiliation:
1. State Key Laboratory of Chemical Engineering Institute of Pharmaceutical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310027 China
2. ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
3. Transfar Group Co., Ltd. Transfar Tower NO.945 Minhe Road Hangzhou 311217 China
Abstract
AbstractRealizing durative flattened and dendrite‐free zinc (Zn) metal configuration is the key to resolving premature battery failure caused by the internal short circuit, which is highly determined by the crystal growth in the electrocrystallization process. Herein, we report that regulating the molecular structure of the inner Helmholtz plane (HIP) can effectively convert the deposition into activation control by weakening the solvated ion adsorption at the interface. The moderated electrochemical reaction kinetics lower than the adatom self‐diffusion rate steers conformal stratiform Zn growth and dominant Zn (0001) texture, achieving crystallographic optimization. Through in situ mediation of electrolyte engineering, orientational plating and stripping behaviors at edge‐sites and tailored solvation structure immensely improve the utilization efficiency and total charge passed of Zn metal, even under extreme conditions, including high areal capacity (3 mAh cm−2) and wide temperature range (−40–60 °C).
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献