“Zero” Intrinsic Fluorescence Sensing‐Platforms Enable Ultrasensitive Whole Blood Diagnosis and In Vivo Imaging

Author:

Jiang Gangwei1,Liu Hong1,Deng Guohui1,Liu Han1,Zhou Zhixuan1,Ren Tian‐Bing1,Wang Lu2,Zhang Xiao‐Bing1,Yuan Lin1ORCID

Affiliation:

1. State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University Changsha 410082 PR China

2. Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy Fudan University Shanghai 201203 PR China

Abstract

AbstractAbnormal physiological processes and diseases can lead to content or activity fluctuations of biocomponents in organelles and whole blood. However, precise monitoring of these abnormalities remains extremely challenging due to the insufficient sensitivity and accuracy of available fluorescence probes, which can be attributed to the background fluorescence arising from two sources, 1) biocomponent autofluorescence (BCAF) and 2) probe intrinsic fluorescence (PIF). To overcome these obstacles, we have re‐engineered far‐red to NIR II rhodol derivatives that possess weak BCAF interference. And a series of “zero” PIF sensing‐platforms were created by systematically regulating the open‐loop/spirocyclic forms. Leveraging these advancements, we devised various ultra‐sensitive NIR indicators, achieving substantial fluorescence boosts (190 to 1300‐fold). Among these indicators, 8‐LAP demonstrated accurate tracking and quantifying of leucine aminopeptidase (LAP) in whole blood at various stages of tumor metastasis. Furthermore, coupling 8‐LAP with an endoplasmic reticulum‐targeting element enabled the detection of ERAP1 activity in HCT116 cells with p53 abnormalities. This delicate design of eliminating PIF provides insights into enhancing the sensitivity and accuracy of existing fluorescence probes toward the detection and imaging of biocomponents in abnormal physiological processes and diseases.

Funder

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

Science and Technology Program of Hunan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3