Affiliation:
1. Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200438 P. R. China
2. National Engineering Laboratory for Industrial Wastewater Treatment East China University of Science and Technology Shanghai 200438 P. R. China
Abstract
AbstractThe electro‐reforming of glycerol is an emerging technology of simultaneous hydrogen production and biomass valorization. However, its complex reaction network and limited catalyst tunability restrict the precise steering toward high selectivity. Herein, we incorporated the chelating phenanthrolines into the bulk nickel hydroxide and tuned the electronic properties by installing functional groups, yielding tunable selectivity toward formate (max 92.7 %) and oxalate (max 45.3 %) with almost linear correlation with the Hammett parameters. Further combinatory study of intermediate analysis and various spectroscopic techniques revealed the electronic effect of tailoring the valence band that balances between C−C cleavage and oxidation through the key glycolaldehyde intermediate. A two‐electrode electro‐reforming setup using the 5‐nitro‐1,10‐phenanthroline‐nickel hydroxide catalyst was further established to convert crude glycerol into pure H2and isolable sodium oxalate with high efficiency.
Funder
National Natural Science Foundation of China
Postdoctoral Science Foundation of Jiangsu Province
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献