Struktur‐ und Daten‐basiertes Protein Engineering von Transaminasen zur Verbesserung von Aktivität und Stereoselektivität

Author:

Ao Yu‐Fei123ORCID,Pei Shuxin4ORCID,Xiang Chao1ORCID,Menke Marian J.1ORCID,Shen Lin45ORCID,Sun Chenghai1ORCID,Dörr Mark1ORCID,Born Stefan6ORCID,Höhne Matthias17ORCID,Bornscheuer Uwe T.1ORCID

Affiliation:

1. Abt. Biotechnologie und Enzymkatalyse Institut für Biochemie Universität Greifswald Felix-Hausdorff-Str. 4 17487 Greifswald Deutschland

2. Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Zhongguancun North First Street 2 Beijing 100190 China

3. University of Chinese Academy of Sciences Yuquan Road 19(A) Beijing 100049 China

4. Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education College of Chemistry Beijing Normal University Xinjiekouwai Street 19 Beijing 100875 China

5. Yantai-Jingshi Institute of Material Genome Engineering Nanchang Road 48 Yantai Shandong 265505 China

6. Technische Universität Berlin Lehrstuhl für Bioverfahrenstechnik Ackerstraße 76 13355 Berlin Deutschland

7. Technische Universität Berlin Abteilung Chemie / Biokatalyse Müller-Breslau-Str. 10 10623 Berlin Deutschland

Abstract

AbstractAmintransaminasen (ATAs) sind leistungsstarke Biokatalysatoren für die stereoselektive Synthese chiraler Amine. Machine learning ist ein vielversprechender Ansatz für das Protein‐Engineering, aber Modelle zur Aktivitätsvorhersage für ATAs sind aufgrund der Schwierigkeit, qualitativ hochwertige Trainingsdaten zu erhalten, schwer zu finden. Aus diesem Grund haben wir zunächst Varianten der ATA aus Ruegeria sp. (3FCR) mit verbesserter katalytischer Aktivität (bis zu 2000‐fach) sowie umgekehrter Stereoselektivität durch strukturabhängiges rationales Design entwickelt und dabei einen hochwertigen Datensatz gesammelt. Anschließend entwarfen wir einen modifizierten One‐Hot‐Code, um sterische und elektronische Effekte von Substraten und Aminosäureresten innerhalb von ATAs zu beschreiben. Schließlich erstellten wir einen Gradient Boosting Regression Tree Prädiktor zur Vorhersage der katalytischen Aktivität und Stereoselektivität und wendeten diesen für das datengesteuerte Design optimierter Varianten an, die dann eine verbesserte Aktivität zeigten (bis zum Dreifachen im Vergleich zu den besten zuvor identifizierten Varianten). Wir haben zudem gezeigt, dass das Modell die katalytische Aktivität für ATA‐Varianten eines anderen Enzyms vorhersagen kann, indem es mit einem kleinen Satz zusätzlicher Daten neu trainiert wurde.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Key Technologies Research and Development Program

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3