Affiliation:
1. Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
Abstract
AbstractPolythioesters (PTEs) are emerging sustainable polymers for their degradability and recyclability. However, low polymerizability of monomers and extensive side reactions often hampered the polymerization process. Moreover, copolymers containing both thioester and other types of functional groups in the backbone are highly desirable but rarely accomplished owing to several synthetic challenges. Here, we report the ring‐opening cascade polymerization (ROCAP) of N‐(2‐(acetylthio)ethyl)‐glycine N‐carboxyanhydrides (TE‐NCA) to afford recyclable PTEs and unprecedented poly(thioester‐co‐peptoid)s (P(TE‐co‐PP)s) in a controlled manner. By developing appropriated carboxylic acid‐tertiary amine dual catalysts, intramolecular S‐to‐N acyl shift is coupled into the ROCAP process of TE‐NCA to yield products with dispersity below 1.10, molecular weight (Mn) up to 84.5 kDa, and precisely controlled ratio of thioester to peptoids. Random copolymerization of sarcosine NCA (Sar‐NCA) and TE‐NCA gives thioester‐embedded polysarcosine with facile backbone degradation while maintaining the water solubility. This work represents a paradigm shift for the ROP of NCAs, enriches the realm of cascade polymerizations, and provides a powerful synthetic approach to functional PTEs and P(TE‐co‐PP)s that are otherwise difficult or impossible to make.
Funder
Natural Science Foundation of Beijing Municipality
National Natural Science Foundation of China