Palladium Encapsulated by an Oxygen‐Saturated TiO2 Overlayer for Low‐Temperature SO2‐Tolerant Catalysis during CO Oxidation

Author:

Chen Jingkun1,Su Yuetan1,Meng Qingjie2,Qian Hehe3,Shi Le1,Darr Jawwad A.4,Wu Zhongbiao15,Weng Xiaole13ORCID

Affiliation:

1. Key Laboratory of Environment Remediation and Ecological Health Ministry of Education College of Environmental and Resource Sciences Zhejiang University Hangzhou 310058 P. R. China

2. School of Civil & Environmental Engineering and Geography Science Ningbo University Ningbo 315211 P. R. China

3. ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P. R. China

4. Christopher Ingold Laboratories Department of Chemistry University College London London WC1H 0AJ UK

5. Zhejiang Provincial Engineering Research Centre of Industrial Boiler & Furnace Flue Gas Pollution Control Hangzhou 310058 P. R. China

Abstract

AbstractThe development of oxidation catalysts that are resistant to sulfur poisoning is crucial for extending the lifespan of catalysts in real‐working conditions. Herein, we describe the design and synthesis of oxide‐metal interaction (OMI) catalyst under oxidative atmospheres. By using organic coated TiO2, an oxide/metal inverse catalyst with non‐classical oxygen‐saturated TiO2 overlayers were obtained at relatively low temperature. These catalysts were found to incorporate ultra‐small Pd metal and support particles with exceptional reactivity and stability for CO oxidation (under 21 vol % O2 and 10 vol % H2O). In particular, the core (Pd)‐shell (TiO2) structured OMI catalyst exhibited excellent resistance to SO2 poisoning, yielding robust CO oxidation performance at 120 °C for 240 h (at 100 ppm SO2 and 10 vol % H2O). The stability of this new OMI catalyst was explained through density functional theory (DFT) calculations that interfacial oxygen atoms at Pd−O−Ti sites (of oxygen‐saturated overlayers) serve as non‐metal active sites for low‐temperature CO oxidation, and change the SO2 adsorption from metal(d)‐to‐SO2(π*) back‐bonding to much weaker σ(Ti−S) bonding.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3