On the Mechanisms of Hypohalous Acid Formation and Electrophilic Halogenation by Non‐Native Halogenases

Author:

Prakinee Kridsadakorn1ORCID,Lawan Narin2ORCID,Phintha Aisaraphon1ORCID,Visitsatthawong Surawit1,Chitnumsub Penchit13,Jitkaroon Watcharapa1,Chaiyen Pimchai1ORCID

Affiliation:

1. School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand

2. Department of Chemistry, Faculty of Science Chiang Mai University Chiang Mai 50200 Thailand

3. National Center for Genetic Engineering and Biotechnology (BIOTEC) National Science and Technology Development Agency (NSTDA) Thailand Science Park Pathum Thani 12120 Thailand

Abstract

AbstractEnzymatic electrophilic halogenation is a mild tool for functionalization of diverse organic compounds. Only a few groups of native halogenases are capable of catalyzing such a reaction. In this study, we used a mechanism‐guided strategy to discover the electrophilic halogenation activity catalyzed by non‐native halogenases. As the ability to form a hypohalous acid (HOX) is key for halogenation, flavin‐dependent monooxygenases/oxidases capable of forming C4a‐hydroperoxyflavin (FlC4a‐OOH), such as dehalogenase, hydroxylases, luciferase and pyranose‐2‐oxidase (P2O), and flavin reductase capable of forming H2O2 were explored for their abilities to generate HOX in situ. Transient kinetic analyses using stopped‐flow spectrophotometry/fluorometry and product analysis indicate that FlC4a‐OOH in dehalogenases, selected hydroxylases and luciferases, but not in P2O can form HOX; however, the HOX generated from FlC4a‐OOH cannot halogenate their substrates. Remarkably, in situ H2O2 generated by P2O can form HOI and also iodinate various compounds. Because not all enzymes capable of forming FlC4a‐OOH can react with halides to form HOX, QM/MM calculations, site‐directed mutagenesis and structural analysis were carried out to elucidate the mechanism underlying HOX formation and characterize the active site environment. Our findings shed light on identifying new halogenase scaffolds besides the currently known enzymes and have invoked a new mode of chemoenzymatic halogenation.

Funder

Vidyasirimedhi Institute of Science and Technology

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3