Highly Efficient Acidic Electrosynthesis of Hydrogen Peroxide at Industrial‐Level Current Densities Promoted by Alkali Metal Cations

Author:

Cao Peike1,Zhao Xueyang23,Liu Yanming1,Zhang Haiguang1,Zhao Kun4,Chen Shuo1ORCID,Yu Hongtao1,Dong Fan23,Nichols Nathaniel N.5,Chen Jingguang G.5,Quan Xie1

Affiliation:

1. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology Dalian University of Technology Dalian 116024 PR China

2. Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 PR China

3. Institute of Fundamental and Frontier Sciences University of Electronic Science and Technology of China Chengdu 611731 PR China

4. College of Environmental Science and Engineering North China Electric Power University Beijing 102206 PR China

5. Department of Chemical Engineering Columbia University New York NY, 10027 USA

Abstract

AbstractAcidic H2O2 synthesis through electrocatalytic 2e oxygen reduction presents a sustainable alternative to the energy‐intensive anthraquinone oxidation technology. Nevertheless, acidic H2O2 electrosynthesis suffers from low H2O2 Faradaic efficiencies primarily due to the competing reactions of 4e oxygen reduction to H2O and hydrogen evolution in environments with high H+ concentrations. Here, we demonstrate the significant effect of alkali metal cations, acting as competing ions with H+, in promoting acidic H2O2 electrosynthesis at industrial‐level currents, resulting in an effective current densities of 50–421 mA cm−2 with 84–100 % Faradaic efficiency and a production rate of 856–7842 μmol cm−2 h−1 that far exceeds the performance observed in pure acidic electrolytes or low‐current electrolysis. Finite‐element simulations indicate that high interfacial pH near the electrode surface formed at high currents is crucial for activating the promotional effect of K+. In situ attenuated total reflection Fourier transform infrared spectroscopy and ab initio molecular dynamics simulations reveal the central role of alkali metal cations in stabilizing the key *OOH intermediate to suppress 4e oxygen reduction through interacting with coordinated H2O.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3