Affiliation:
1. Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China.
2. Department of Mechanical and Construction Engineering Northumbria University Newcastle upon Tyne NE1 8ST United Kingdom
Abstract
AbstractCovalent organic frameworks (COFs), at the forefront of porous materials, hold tremendous potential in membrane separation; however, achieving high continuity in COF membranes remains crucial for efficient gas separation. Here, we present a unique approach termed assembly‐dissociation‐reconstruction for fabricating COF membranes tailored for CO2/N2 separation. A parent COF is designed from two‐node aldehyde and three‐node amine monomers and dissociated to high‐aspect‐ratio nanosheets. Subsequently, COF nanosheets are orderly reconstructed into a crack‐free membrane by surface reaction under water evaporation. The membrane exhibits high crystallinity, open pores and a strong affinity for CO2 adsorption over N2, resulting in CO2 permeance exceeding 1060 GPU and CO2/N2 selectivity surpassing 30.6. The efficacy of this strategy offers valuable guidance for the precise fabrication of gas‐separation membranes.
Funder
National Natural Science Foundation of China