Steering Geometric Reconstruction of Bismuth with Accelerated Dynamics for CO2 Electroreduction

Author:

Wang Xiaowen1,Zhang Yangyang1,Wang Shao1,Li Yifan1,Feng Yafei1,Dai Zechuan1,Chen Yanxu1,Meng Xiangmin2,Xia Jing2,Zhang Genqiang1ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China

2. Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China

Abstract

AbstractBismuth‐based materials have emerged as promising catalysts in the electrocatalytic reduction of CO2 to formate. However, the reasons for the reconstruction of Bi‐based precursors to form bismuth nanosheets are still puzzling, especially the formation of defective bismuth sites. Herein, we prepare bismuth nanosheets with vacancy‐rich defects (V‐Bi NS) by rapidly reconstructing Bi19Cl3S27 under negative potential. Theoretical analysis reveals that the introduction of chlorine induces the generation of intrinsic electric field in the precursor, thereby increasing the electron transfer rate and further promoting the metallization of trivalent bismuth. Meanwhile, experimental tests verify that Bi19Cl3S27 has a faster reconstruction rate than Bi2S3. The formed V‐Bi NS exhibits up to 96 % HCOO Faraday efficiency and 400 mA cm−2 HCOO partial current densities, and its electrochemical active surface area normalized formate current density and yield are 2.2 times higher than those of intact bismuth nanosheets (I‐Bi NS). Density functional theory calculations indicate that bismuth vacancies with electron‐rich aggregation reduce the activation energy of CO2 to *CO2 radicals and stabilize the adsorption of the key intermediate *OCHO, thus facilitating the reaction kinetics of formate production.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3