Highly Efficient One‐pot Electrosynthesis of Oxime Ethers from NOx over Ultrafine MgO Nanoparticles Derived from Mg‐based Metal‐Organic Frameworks

Author:

Wang Shihan1,Xiang Runan1,Liao Peisen1,Kang Jiawei1,Li Suisheng1,Mao Min2,Liu Lingmei2,Li Guangqin1ORCID

Affiliation:

1. Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education Lehn Institute of Functional Materials Institute of Green Chemistry and Molecular Engineering Guangdong Basic Research Center of Excellence for Functional Molecular Engineering School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China

2. Multi-scale Porous Materials Center Institute of Advanced Interdisciplinary Studies School of Chemistry and Chemical Engineering Chongqing University Chongqing 400044 P. R. China

Abstract

AbstractOxime ethers are attractive compounds in medicinal scaffolds due to the biological and pharmaceutical properties, however, the crucial and widespread step of industrial oxime formation using explosive hydroxylamine (NH2OH) is insecure and troublesome. Herein, we present a convenient method of oxime ether synthesis in a one‐pot tandem electrochemical system using magnesium based metal‐organic framework‐derived magnesium oxide anchoring in self‐supporting carbon nanofiber membrane catalyst (MgO‐SCM), the in situ produced NH2OH from nitrogen oxides electrocatalytic reduction coupled with aldehyde to produce 4‐cyanobenzaldoxime with a selectivity of 93 % and Faraday efficiency up to 65.1 %, which further reacted with benzyl bromide to directly give oxime ether precipitate with a purity of 97 % by convenient filtering separation. The high efficiency was attributed to the ultrafine MgO nanoparticles in MgO‐SCM, effectively inhibiting hydrogen evolution reaction and accelerating the production of NH2OH, which rapidly attacked carbonyl of aldehydes to form oximes, but hardly crossed the hydrogenation barrier of forming amines, thus leading to a high yield of oxime ether when coupling benzyl bromide nucleophilic reaction. This work highlights the importance of kinetic control in complex electrosynthetic organonitrogen system and demonstrates a green and safe alternative method for synthesis of organic nitrogen drug molecules.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3