Electron Delocalization Enables Sulfone‐based Single‐solvent Electrolyte for Lithium Metal Batteries

Author:

Mominur Rahman Muhammad1,Hu Enyuan1ORCID

Affiliation:

1. Chemistry Division Brookhaven National Laboratory Upton NY 11973 USA

Abstract

AbstractLi‐metal batteries (LMB), although providing high energy density, face the grand challenge of identifying good electrolyte solvents for cycling. Common solvents are either only stable against lithium metal anode or only stable against LiNixMnyCo1‐xyO2 (NMC) cathode. There is significant effort trying to increase the cathode stability for ether electrolytes, which are in general stable against lithium metal anode. In comparison, there is much less effort trying to increase the anode stability of electrolytes that are stable against NMC cathode. One example is the sulfone‐based electrolyte. It has good cathode stability but is hindered from practical application because of (1) high viscosity and poor wetting capability and (2) poor anode stability. Here, we solve these issues by modifying the sulfone molecules using resonance and electron withdrawing effect. The viscosity is significantly reduced by delocalizing the electrons through introducing additional oxygen on the molecular backbone and applying appropriate fluorination. The resulting molecule 2,2,2‐trifluoroethyl mesylate (TFEM) has decreased Lewis basicity and less reactivity toward Li+. The electrolyte based on TFEM as single solvent enables cycling of LMB under harsh conditions of low N/P ratio (21 mg/cm2 NMC811 and 50 μm Li) with 90 % capacity retention after 160 cycles at C/3 discharge rate.

Funder

Vehicle Technologies Office

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3