Highly Oxidative‐Resistant Cyano‐Functionalized Lithium Borate Salt for Enhanced Cycling Performance of Practical Lithium‐Ion Batteries

Author:

Min Xueqing123,Han Changxing1,Zhang Shenghang1234,Ma Jun1,Hu Naifang1,Li Jiedong1,Du Xiaofan1,Xie Bin1,Lin Hong‐Ji5,Kuo Chang‐Yang56,Chen Chien‐Te5,Hu Zhiwei7,Qiao Lixin123,Cui Zili123,Xu Gaojie1238,Cui Guanglei12384ORCID

Affiliation:

1. Qingdao Industrial Energy Storage Research Institute Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 266101 Qingdao China

2. Shandong Energy Institute 266101 Qingdao China

3. Qingdao New Energy Shandong Laboratory 266101 Qingdao China

4. School of Future Technology University of Chinese Academy of Sciences 100049 Beijing China

5. National Synchrotron Radiation Research Center 30076 Hsinchu Taiwan P. R. China

6. Department of Electrophysics National Yang Ming Chiao Tung University 30076 Hsinchu Taiwan P. R. China

7. Max Planck Institute for Chemical Physics of Solids 01187 Dresden Germany

8. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences 100049 Beijing China

Abstract

AbstractLithium difluoro(oxalato) borate (LiDFOB) has been widely investigated in lithium‐ion batteries (LIBs) owing to its advantageous thermal stability and excellent aluminum passivation property. However, LiDFOB tends to suffer from severe decomposition and generate a lot of gas species (e.g., CO2). Herein, a novel cyano‐functionalized lithium borate salt, namely lithium difluoro(1,2‐dihydroxyethane‐1,1,2,2‐tetracarbonitrile) borate (LiDFTCB), is innovatively synthesized as a highly oxidative‐resistant salt to alleviate above dilemma. It is revealed that the LiDFTCB‐based electrolyte enables LiCoO2/graphite cells with superior capacity retention at both room and elevated temperatures (e.g., 80 % after 600 cycles) with barely any CO2 gas evolution. Systematic studies reveal that LiDFTCB tends to form thin and robust interfacial layers at both electrodes. This work emphasizes the crucial role of cyano‐functionalized anions in improving cycle lifespan and safety of practical LIBs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3