Metal‐Organic Frameworks: Direct Synthesis by Organic Acid‐Etching and Reconstruction Disclosure as Oxygen Evolution Electrocatalysts

Author:

Wang Xiao1,Zhou Wei2,Zhai Shengliang1,Chen Xiaokang1,Peng Zheng3,Liu Zhi3,Deng Wei‐Qiao1,Wu Hao14ORCID

Affiliation:

1. Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering Shandong University Qingdao 266071 China

2. School of Chemistry and Chemical Engineering Hainan University Haikou 570228 China

3. Center for Transformative Science Shanghai High Repetition Rate XFEL and Extreme Light Facility (SHINE) ShanghaiTech University Shanghai 201210 China

4. Suzhou Research Institute of Shandong University Suzhou Jiangsu 215123 China

Abstract

AbstractMetal‐organic frameworks (MOFs) have emerged as promising oxygen evolution reaction (OER) electrocatalysts. Chemically bonded MOFs on supports are desirable yet lacking in routine synthesis, as they may allow variable structural evolution and the underlying structure‐activity relationship to be disclosed. Herein, direct MOF synthesis is achieved by an organic acid‐etching strategy (AES). Using π‐conjugated ferrocene (Fc) dicarboxylic acid as the etching agent and organic ligand, a series of MFc‐MOF (M=Ni, Co, Fe, Zn) nanosheets are synthesized on the metal supports. The crystal structure is studied using X‐ray diffraction and low‐dose transmission electron microscopy, which is quasi‐lattice‐matched with that of the metal, enabling in situ MOF growth. Operando Raman and attenuated total reflectance Fourier transform infrared spectroscopy disclose that the NiFc‐MOF features dynamic structural rebuilding during OER. The reconstructed one showing optimized electronic structures with an upshifted total d‐band center, high M−O bonding state occupancy, and localized electrons on adsorbates indicated by density functional theory calculations, exhibits outstanding OER performance with a fairly low overpotential (130 mV at 10 mA cm−2) and good stability (144 h). The newly established approach for direct MOF synthesis and structural reconstruction disclosure stimulate the development of more prudent catalysts for advancing OER.

Funder

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3