Affiliation:
1. Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
2. University of Chinese Academy of Sciences Beijing 100049 P. R. China
3. Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion Science Center for Material Creation and Energy Conversion Institute of Frontier and Interdisciplinary Science Shandong University Qingdao 266237 P. R. China
Abstract
AbstractModulating the electronic structure of electrode materials at atomic level is the key to controlling electrodes with outstanding rate capability. On the basis of modulating the iron cationic vacancies (IV) and electronic structure of materials, we proposed the method of preparing graphdiyne/ferroferric oxide heterostructure (IV‐GDY‐FO) as anode materials. The goal is to motivate lithium‐ion batteries (LIBs) toward ultra‐high capacity, superior cyclic stability, and excellent rate performance. The graphdiyne is used as carriers to disperse Fe3O4 uniformly without agglomeration and induce high valence of Fe with reducing the energy in the system. The presence of Fe vacancy could regulate the charge distribution around vacancies and adjacent atoms, leading to facilitate electronic transportation, enlarge the lithium‐ion diffusion, and decrease Li+ diffusion barriers, and thus displaying significant pseudocapacitive process and advantageous lithium‐ion storage. The optimized electrode IV‐GDY‐FO reveals a capacity of 2084.1 mAh g−1 at 0.1 C, superior cycle stability and rate performance with a high specific capacity of 1057.4 mAh g−1 even at 10 C.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献