Affiliation:
1. Institute of Organic Chemistry Laboratory for Sustainable Chemistry and Catalysis (LSusCat) Johannes Kepler University (JKU) Altenberger Straße 69 4040 Linz Austria
2. Institute of Applied Chemistry Department of Science and Technology IMC University of Applied Sciences Krems Wien Piaristengasse 1 3500 Krems Austria
3. Institute of Physical Chemistry and Linz Institute of Organic Solar Cells Johannes Kepler University Linz Altenberger Straße 69 4040 Linz Austria
Abstract
AbstractAs alternative energy sources are essential to reach a climate‐neutral economy, hydrogen peroxide (H2O2) as futuristic energy carrier gains enormous awareness. However, seeking for stable and electrochemically selective H2O2 ORR electrocatalyst is yet a challenge, making the design of—ideally—bifunctional catalysts extremely important and outmost of interest. In this study, we explore the application of a trimetallic cobalt(II) triazole pyridine bis‐[cobalt(III) corrole] complex CoIITP[CoIIIC]2 3 in OER and ORR catalysis due to its remarkable physicochemical properties, fast charge transfer kinetics, electrochemical reversibility, and durability. With nearly 100 % selective catalytic activity towards the two‐electron transfer generated H2O2, an ORR onset potential of 0.8 V vs RHE and a cycling stability of 50 000 cycles are detected. Similarly, promising results are obtained when applied in OER catalysis. A relatively low overpotential at 10 mA cm−2 of 412 mV, Faraday efficiency 98 % for oxygen, an outstanding Tafel slope of 64 mV dec−1 combined with superior stability.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献