Surface Lattice Modulation Enables Stable Cycling of High‐Loading All‐solid‐state Batteries at High Voltages

Author:

Zhang Hong‐Shen12,Lei Xin‐Cheng3,Su Dong3,Guo Si‐Jie1,Zhu Jia‐Cheng3,Wang Xue‐Feng3,Zhang Xing1,Wu Ting‐Ting1,Lu Si‐Qi12,Li Yu‐Tao4,Cao An‐Min12ORCID

Affiliation:

1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnol-ogy and Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences (CAS) No.2 Zhongguancun North First Street 100190 Beijing P. R. China

2. University of Chinese Academy of Sciences No.19(A) Yuquan Road 100049 Beijing P. R. China

3. Beijing National Laboratory for Condensed Matter Physics Institute of Physics Chinese Academy of Sciences No. 8 Zhongguancun South Third Street 100190 Beijing P. R. China

4. Beijing Frontier Research Center on Clean Energy Huairou Division Institute of Physics Chinese Academy of Sciences Yongle North Second Street, Yanqi Economic Development Zone, Huairou District 101400 Beijing P. R. China

Abstract

AbstractHalide solid electrolytes, known for their high ionic conductivity at room temperature and good oxidative stability, face notable challenges in all–solid–state Li–ion batteries (ASSBs), especially with unstable cathode/solid electrolyte (SE) interface and increasing interfacial resistance during cycling. In this work, we have developed an Al3+–doped, cation–disordered epitaxial nanolayer on the LiCoO2 surface by reacting it with an artificially constructed AlPO4 nanoshell; this lithium–deficient layer featuring a rock–salt–like phase effectively suppresses oxidative decomposition of Li3InCl6 electrolyte and stabilizes the cathode/SE interface at 4.5 V. The ASSBs with the halide electrolyte Li3InCl6 and a high–loading LiCoO2 cathode demonstrated high discharge capacity and long cycling life from 3 to 4.5 V. Our findings emphasize the importance of specialized cathode surface modification in preventing SE degradation and achieving stable cycling of halide–based ASSBs at high voltages.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Beijing National Laboratory for Molecular Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3