Affiliation:
1. Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
2. University of Chinese Academy of Sciences Beijing 100049 China
Abstract
AbstractWe construct a compartmentalized nanoarchitecture to regulate bioenergy level. Glucose dehydrogenase, urease and nicotinamide adenine dinucleotide are encapsulated inside through liquid‐liquid phase separation. ATPase and glucose transporter embedded in hybrid liposomes are attached at the surface. Glucose is transported and converted to gluconic acid catalyzed by glucose dehydrogenase, resulting in an outward proton gradient to drive ATPase for ATP synthesis. In parallel, urease catalyzes hydrolysis of urea to generate ammonia, which leads to an inward proton gradient to drive ATPase for ATP hydrolysis. These processes lead to a change of the direction of proton gradient, thus achieving artificial ATP oscillation. Importantly, the frequency and the amplitude of the oscillation can be programmed. The work explores nanoarchitectonics integrating multiple components to realize artificial and precise oscillation of bioenergy level.