Naphthyl Substituted Impurities Induce Efficient Room Temperature Phosphorescence

Author:

Qiao Weiguo1,Yao Ming1,Xu Jingwen2,Peng Haiyan1,Xia Jianlong2,Xie Xiaolin1,Li Zhong'an1ORCID

Affiliation:

1. Key Laboratory for Material Chemistry of Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering State Key Laboratory of Materials Processing and Die & Mould Technology Huazhong University of Science and Technology Wuhan 430074 China

2. School of Chemistry Chemical Engineering and Life Science State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology Wuhan 430070 China

Abstract

AbstractAccidentally, it was found that triphenylamine (TPA) from commercial sources shows ultralong yellow‐green room temperature phosphorescence (RTP) like commercial carbazole, which however disappears for lab‐synthesized TPA with high purity. Herein, we for the first time identify the impurity types that cause RTP of commercial TPA, which are two N, N‐diphenyl‐naphthylamine isomers. Due to similar molecular polarity and very trace amount (≈0.8 ‰, molar ratio), these naphthyl substituted impurities can be easily overlooked. We further show that even at an extremely low amount (1000000 : 1, mass ratio) of impurities, RTP emission is still generated, attributed to the triplet‐to‐triplet energy transfer mechanism. Notably, this doping strategy is also applicable to the triphenylphosphine and benzophenone host systems, of which strong RTP emission can be activated by simply doping the corresponding naphthyl substituted analogues into them. This work therefore provides a general and efficient host/guest strategy toward high performance and diverse organic RTP materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3