Formation of Supernarrow Borophene Nanoribbons

Author:

Wang Haochen1,Ding Pengcheng2,Xia Guang‐Jie3,Zhao Xiangyun1,E Wenlong1,Yu Miao124ORCID,Ma Zhibo1,Wang Yang‐Gang3,Wang Lai‐Sheng5,Li Jun36,Yang Xueming13

Affiliation:

1. State Key Laboratory of Molecular Reaction Dynamics Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China

2. State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology 150001 Harbin China

3. Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry Southern University of Science and Technology 518055 Shenzhen China

4. School of Materials and Energy University of Electronic Science and Technology 610000 Chengdu China

5. Department of Chemistry Brown University 02912 Providence Rhode Island USA

6. Theoretical Chemistry Center Department of Chemistry Tsinghua University 100084 Beijing China

Abstract

AbstractBorophenes have sparked considerable interest owing to their fascinating physical characteristics and diverse polymorphism. However, borophene nanoribbons (BNRs) with widths less than 2 nm have not been achieved. Herein, we report the experimental realization of supernarrow BNRs. Combining scanning tunneling microscopy imaging with density functional theory modeling and ab initio molecular dynamics simulations, we demonstrate that, under the applied growth conditions, boron atoms can penetrate the outermost layer of Au(111) and form BNRs composed of a pair of zigzag (2,2) boron rows. The BNRs have a width self‐contained to ∼1 nm and dipoles at the edges to keep them separated. They are embedded in the outermost Au layer and shielded on top by the evacuated Au atoms, free of the need for post‐passivation. Scanning tunneling spectroscopy reveals distinct edge states, primarily attributed to the localized spin at the BNRs’ zigzag edges. This work adds a new member to the boron material family and introduces a new physical feature to borophenes.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3