Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene‐Hopene Cyclases

Author:

Ludwig Julian1,Curado‐Carballada Christian2,Hammer Stephan C.13,Schneider Andreas1,Diether Svenja1,Kress Nico1,Ruiz‐Barragán Sergi24,Osuna Sílvia25,Hauer Bernhard1ORCID

Affiliation:

1. Department of Technical Biochemistry Institute of Biochemistry and Technical Biochemistry University of Stuttgart Allmandring 31 70569 Stuttgart Germany

2. Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química Universitat de Girona Maria Aurèlia Capmany 69 17003 Girona Spain

3. Faculty of Chemistry, Organic Chemistry and Biocatalysis Bielefeld University Universitätsstraße 25 33615 Bielefeld Germany

4. Departament de Fisica Universitat Politecnica de Catalunya Rambla Sant Nebridi 22 08222 Terrassa, Barcelona Spain

5. ICREA Passeig Lluís Companys 23 08010 Barcelona Spain

Abstract

AbstractThe interconversion of monoterpenes is facilitated by a complex network of carbocation rearrangement pathways. Controlling these isomerization pathways is challenging when using common Brønsted and Lewis acid catalysts, which often produce product mixtures that are difficult to separate. In contrast, natural monoterpene cyclases exhibit high control over the carbocation rearrangement reactions but are reliant on phosphorylated substrates. In this study, we present engineered squalene‐hopene cyclases from Alicyclobacillus acidocaldarius (AacSHC) that catalyze the challenging isomerization of monoterpenes with unprecedented precision. Starting from a promiscuous isomerization of (+)‐β‐pinene, we first demonstrate noticeable shifts in the product distribution solely by introducing single point mutations. Furthermore, we showcase the tuneable cation steering by enhancing (+)‐borneol selectivity from 1 % to >90 % (>99 % de) aided by iterative saturation mutagenesis. Our combined experimental and computational data suggest that the reorganization of key aromatic residues leads to the restructuring of the water network that facilitates the selective termination of the secondary isobornyl cation. This work expands our mechanistic understanding of carbocation rearrangements and sets the stage for target‐oriented skeletal reorganization of broadly abundant terpenes.

Funder

HORIZON EUROPE European Research Council

Deutsche Forschungsgemeinschaft

Generalitat de Catalunya

Ministerio de Ciencia e Innovación

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3