Enabling the Operation of Highly Compatible LiI‐3‐Hydroxypropionitrile Small‐Molecule Solid‐State Electrolytes in Lithium Metal Batteries via Stepped‐Amorphization Strategy

Author:

Song Tao1,Wang Da1,Wang Hongxia2,Yu Jia3ORCID,Shi Siqi13ORCID

Affiliation:

1. School of Materials Science and Engineering Shanghai University Shanghai 200444 China

2. School of Chemistry and Physics Faculty of Science Queensland University of Technology Brisbane Queensland 4001 Australia

3. Materials Genome Institute Shanghai University Shanghai 200444 China

Abstract

AbstractIntegrating the advantages of both inorganic ceramic and organic polymer solid‐state electrolytes, small‐molecule solid‐state electrolytes represented by LiI‐3‐hydroxypropionitrile (LiI‐HPN) inorganic–organic hybrid systems possess good interfacial compatibility and high modulus. However, their lack of intrinsic Li+ conduction ability hinders potential application in lithium metal batteries until now, despite containing LiI phase composition. Herein, inspired by evolution tendency of ionic conduction behaviors together with first‐principles molecular dynamics simulations, we propose a stepped‐amorphization strategy to break the Li+ conduction bottleneck of LiI‐HPN. It involves three progressive steps of composition (LiI‐content increasing), time (long‐time standing), and temperature (high‐temperature melting) regulations, to essentially construct a small‐molecule‐based composite solid‐state electrolyte with intensified amorphous degree, which realizes efficient conversion from an I to Li+ conductor and improved conductivity. As a proof, the stepped‐optimized LiI‐HPN is successfully operated in lithium metal batteries cooperated with Li4Ti5O12 cathode to deliver considerable compatibility and stability over 250 cycles. This work not only clarifies the ionic conduction mechanisms of LiI‐HPN inorganic–organic hybrid systems, but also provides a reasonable strategy to broaden the application scenarios of highly compatible small‐molecule solid‐state electrolytes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3