Particle Engineering via Supramolecular Assembly of Macroscopic Hydrophobic Building Blocks

Author:

Kim Chan‐Jin1ORCID,Goudeli Eirini1ORCID,Ercole Francesca2,Ju Yi13ORCID,Gu Yuang1ORCID,Xu Wanjun1ORCID,Quinn John F.24ORCID,Caruso Frank1ORCID

Affiliation:

1. Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia

2. Drug Delivery Disposition and Dynamics Theme Monash Institute of Pharmaceutical Sciences Monash University Parkville Victoria 3052 Australia

3. School of Science RMIT University Melbourne Victoria 3000 Australia

4. Department of Chemical Engineering Faculty of Engineering Monash University Clayton Victoria 3800 Australia

Abstract

AbstractTailoring the hydrophobicity of supramolecular assembly building blocks enables the fabrication of well‐defined functional materials. However, the selection of building blocks used in the assembly of metal–phenolic networks (MPNs), an emerging supramolecular assembly platform for particle engineering, has been essentially limited to hydrophilic molecules. Herein, we synthesized and applied biscatechol‐functionalized hydrophobic polymers (poly(methyl acrylate) (PMA) and poly(butyl acrylate) (PBA)) as building blocks to engineer MPN particle systems (particles and capsules). Our method allowed control over the shell thickness (e.g., between 10 and 21 nm), stiffness (e.g., from 10 to 126 mN m−1), and permeability (e.g., 28–72 % capsules were permeable to 500 kDa fluorescein isothiocyanate‐dextran) of the MPN capsules by selection of the hydrophobic polymer building blocks (PMA or PBA) and by controlling the polymer concentration in the MPN assembly solution (0.25–2.0 mM) without additional/engineered assembly processes. Molecular dynamics simulations provided insights into the structural states of the hydrophobic building blocks during assembly and mechanism of film formation. Furthermore, the hydrophobic MPNs facilitated the preparation of fluorescent‐labeled and bioactive capsules through postfunctionalization and also particle–cell association engineering by controlling the hydrophobicity of the building blocks. Engineering MPN particle systems via building block hydrophobicity is expected to expand their use.

Funder

Australian Research Council

National Health and Medical Research Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3