Unlocking Reversible Silicon Redox for High‐Performing Chlorine Batteries

Author:

Yuan Bin1,Wu Liang1,Geng Shitao1,Xu Qiuchen1,Zhao Xiaoju1,Wang Yan1,Liao Meng2,Ye Lei2,Qu Zongtao1,Zhang Xiao1,Wang Shuo1,Ouyang Zhaofeng1,Tang Shanshan1,Peng Huisheng2ORCID,Sun Hao1

Affiliation:

1. Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Zhangjiang Institute for Advanced Study Shanghai Jiao Tong University Shanghai 200240 China

2. State Key Laboratory of Molecular Engineering of Polymers Department of Macromolecular Science Laboratory of Advanced Materials Fudan University Shanghai 200438 China

Abstract

AbstractChlorine (Cl)‐based batteries such as Li/Cl2 batteries are recognized as promising candidates for energy storage with low cost and high performance. However, the current use of Li metal anodes in Cl‐based batteries has raised serious concerns regarding safety, cost, and production complexity. More importantly, the well‐documented parasitic reactions between Li metal and Cl‐based electrolytes require a large excess of Li metal, which inevitably sacrifices the electrochemical performance of the full cell. Therefore, it is crucial but challenging to establish new anode chemistry, particularly with electrochemical reversibility, for Cl‐based batteries. Here we show, for the first time, reversible Si redox in Cl‐based batteries through efficient electrolyte dilution and anode/electrolyte interface passivation using 1,2‐dichloroethane and cyclized polyacrylonitrile as key mediators. Our Si anode chemistry enables significantly increased cycling stability and shelf lives compared with conventional Li metal anodes. It also avoids the use of a large excess of anode materials, thus enabling the first rechargeable Cl2 full battery with remarkable energy and power densities of 809 Wh kg−1 and 4,277 W kg−1, respectively. The Si anode chemistry affords fast kinetics with remarkable rate capability and low‐temperature electrochemical performance, indicating its great potential in practical applications.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Shanghai Municipal Education Commission

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3