Surface Activation by Single Ru Atoms for Enhanced High‐Temperature CO2 Electrolysis

Author:

Song Yuefeng12,Min Junyong23,Guo Yige12,Li Rongtan12,Zou Geng12,Li Mingrun12,Zang Yipeng1,Feng Weicheng12,Yao Xiaoqian23,Liu Tianfu12,Zhang Xiaomin12,Yu Jingcheng12,Liu Qingxue12,Zhang Peng24,Yu Runsheng24,Cao Xingzhong24,Zhu Junfa5,Dong Kun23,Wang Guoxiong12ORCID,Bao Xinhe12

Affiliation:

1. State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China

2. University of Chinese Academy of Sciences Beijing 100039 China

3. State Key Laboratory of Multiphase Complex Systems Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China

4. Multi-disciplinary Research Division Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

5. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230029 China

Abstract

AbstractCathodic CO2 adsorption and activation is essential for high‐temperature CO2 electrolysis in solid oxide electrolysis cells (SOECs). However, the component of oxygen ionic conductor in the cathode displays limited electrocatalytic activity. Herein, stable single Ruthenium (Ru) atoms are anchored on the surface of oxygen ionic conductor (Ce0.8Sm0.2O2‐δ, SDC) via the strong covalent metal‐support interaction, which evidently modifies the electronic structure of SDC surface for favorable oxygen vacancy formation and enhanced CO2 adsorption and activation, finally evoking the electrocatalytic activity of SDC for high‐temperature CO2 electrolysis. Experimentally, SOEC with the Ru1/SDC‐La0.6Sr0.4Co0.2Fe0.8O3‐δ cathode exhibits a current density as high as 2.39 A cm−2 at 1.6 V and 800 °C. This work expands the application of single atom catalyst to the high‐temperature electrocatalytic reaction in SOEC and provides an efficient strategy to tailor the electronic structure and electrocatalytic activity of SOEC cathode at the atomic scale.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3