Simple and Efficient Synthesis of Novel Tetramers with Enhanced Glass Transition Temperature for High‐Performance and Stable Organic Solar Cells

Author:

Zhang Chen1,Song Jiali1,Ye Linglong1,Li Xiaoming1,Jee Min Hun2,Woo Han Young2,Sun Yanming1ORCID

Affiliation:

1. School of Chemistry Beihang University Beijing 100191 P. R. China

2. Department of Chemistry College of Science KU-KIST Graduate School of Converging Science and Technology Korea University Seoul 136-713 Republic of Korea

Abstract

AbstractOligomer acceptors in organic solar cells (OSCs) have garnered substantial attention owing to their impressive power conversion efficiency (PCE) and long‐term stability. However, the simple and efficient synthesis of oligomer acceptors with higher glass transition temperatures (Tg) remains a formidable challenge. In this study, we propose an innovative strategy for the synthesis of tetramers, denoted as Tet‐n, with elevated Tgs, achieved through only two consecutive Stille coupling reactions. Importantly, our strategy significantly reduces the redundancy in reaction steps compared to conventional methods for linear tetramer synthesis, thereby improving both reaction efficiency and yield. Furthermore, the OSC based on PM6:Tet‐1 attains a high PCE of 17.32 %, and the PM6:L8‐BO:Tet‐1 ternary device achieves an even more higher PCE of 19.31 %. Remarkably, the binary device based on the Tet‐1 tetramer demonstrates outstanding operational stability, retaining 80 % of the initial efficiency (T80) even after 1706 h of continuous illumination, which is primarily attributed to the enhanced Tg (247 °C) and lower diffusion coefficient (1.56×10−27 cm2 s−1). This work demonstrates the effectiveness of our proposed approach in the straightforward and efficient synthesis of tetramers materials with higher Tgs, thus offering a viable pathway for developing high‐efficiency and stable OSCs.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3