Affiliation:
1. Physics Department Florida International University Miami FL 33199 USA
2. The State Key Laboratory of Refractories and Metallurgy Institute of Advanced Materials and Nanotechnology Wuhan University of Science and Technology Wuhan 430081 China
3. Biomolecular Science Institute Florida International University Miami FL 33199 USA
Abstract
AbstractPlasmonic metal nanostructures are essential for plasmon‐mediated chemical reactions (PMCRs) and surface‐enhanced Raman spectroscopy (SERS). The nanostructures are commonly made from the coinage metals gold and silver. Copper (Cu) is less used mainly due to the difficulties in fabricating stable nanostructures. However, Cu is an attractive option with its strong plasmonic properties, high catalytic activities, and relatively cheap price. Herein, we fabricated tunable, reliable, and efficient Cu nanoelectrodes (CuNEs). Using time‐resolved electrochemical SERS, we have comprehensively studied the reversible chemical transformations between aromatic amine and nitro groups modified on the CuNE surface. Their PMCRs are well‐controlled by changing the surface roughness, the oxidation states of Cu, and the applied electrode potential. We thus demonstrate that the Cu nanostructures enable better investigations in the interplays between PMCR, electrochemistry, and Cu catalysis.
Funder
Directorate for Mathematical and Physical Sciences