Molecule Engineering of Sugar Derivatives as Electrolyte Additives for Deep‐Reversible Zn Metal Anode

Author:

Shi Min1,Lei Chengjun1,Wang Huijian1,Jiang Pengjie1,Xu Chen1,Yang Wei1,He Xin1,Liang Xiao1ORCID

Affiliation:

1. State Key Laboratory of Chem/Biosensing and Chemometrics, Joint International Research Laboratory of Energy Electrochemistry, College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China

Abstract

AbstractThe cycling performance of zinc‐ion batteries is greatly affected by dendrite formation and side reactions on zinc anode, particularly in scenarios involving high depth of discharge (DOD) and low negative/positive capacity (N/P) ratios in full cells. Herein, drawing upon principles of host–guest interaction chemistry, we investigate the impact of molecular structure of electrolyte additives, specifically the −COOH and −OH groups, on the zinc negative electrode through molecular design. Our findings reveal that molecules containing these groups exhibit strong adsorption onto zinc anode surfaces and chelate with Zn2+, forming a H2O‐poor inner Helmholtz plane. This effectively suppresses side reactions and promotes dendrite‐free zinc deposition of exposed (002) facets, enhancing stability and reversibility of an average coulombic efficiency of 99.89 % with the introduction of Lactobionic acid (LA) additive. Under harsh conditions of 92 % DOD, Zn//Zn cells exhibit stable cycling at challenging current densities of 15 mA ⋅ cm−2. Even at a low N/P ratio of 1.3, Zn//NH4V4O10 full cells with LA electrolyte exhibit high‐capacity retention of 73 % after 300 cycles, significantly surpassing that of the blank electrolyte. Moreover, in a conversion type Zn//Br static battery with a high areal capacity (~5 mAh ⋅ cm−2), LA electrolyte sustains an improved cycling stability of 700 cycles.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3