Affiliation:
1. State Key Laboratory of Materials-Oriented Chemical Engineering College of Chemical Engineering Nanjing Tech University Nanjing 211816 China
2. Suzhou Laboratory Suzhou 215125 China
3. State Key Laboratory of Chemical Engineering School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
Abstract
AbstractIn metal‐based flow battery, membranes significantly impact energy conversion efficiency and security. Unfortunately, damages to the membrane occur due to gradual accumulation of metal dendrites, causing short circuits and shortening cycle life. Herein, we developed a rigid hierarchical porous ceramic flow battery composite membrane with a sub‐10‐nm‐thick polyelectrolyte coating to achieve high ion selectivity and conductivity, to restrain dendrite, and to realize long cycle life and high areal capacity. An aqueous zinc‐iron flow battery prepared using this membrane achieved an outstanding energy efficiency of >80%, exhibiting excellent long‐term stability (over 1000 h) and extremely high areal capacity (260 mAh cm−2). Low‐field nuclear magnetic resonance (NMR) spectroscopy, small‐angle X‐ray scattering, in situ infrared spectroscopy, solid‐state NMR analysis, and nano‐computed tomography revealed that the rigid hierarchical pore structures and numerous hydrogen bonding networks in the membrane contributed to the stable operation and superior battery performance. This study contributes to the development of next‐generation metal‐based flow battery membranes for energy and power generation.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China