Leveraging Radiation‐triggered Metal Prodrug Activation Through Nanosurface Energy Transfer for Directed Radio‐chemo‐immunotherapy

Author:

Ruan Feixia1,Fang Hui2,Chen Fangman3,Xie Xiaochun1,He Maomao4,Wang Ran4,Lu Junna2,Wu Ziping3,Liu Jiali2,Guo Feng2,Sun Wen4ORCID,Shao Dan1235

Affiliation:

1. School of Medicine South China University of Technology Guangzhou Guangdong 510006 China

2. School of Biomedical Sciences and Engineering Guangzhou International Campus South China University of Technology Guangzhou Guangdong 511442 China

3. National Engineering Research Center for Tissue Restoration and Reconstruction South China University of Technology Guangzhou Guangdong 510006 China

4. State Key Laboratory of Fine Chemicals School of Chemical Engineering Dalian University of Technology Dalian 116024 China

5. Guangdong Provincial Key Laboratory of Biomedical Engineering Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou 510006 China

Abstract

AbstractMetal‐based drugs currently dominate the field of chemotherapeutic agents; however, achieving the controlled activation of metal prodrugs remains a substantial challenge. Here, we propose a universal strategy for the radiation‐triggered activation of metal prodrugs via nanosurface energy transfer (NSET). The core–shell nanoplatform (Ru‐GNC) is composed of gold nanoclusters (GNC) and ruthenium (Ru)‐containing organic–inorganic hybrid coatings. Upon X‐ray irradiation, chemotherapeutic Ru (II) complexes were released in a controlled manner through a unique NSET process involving the transfer of photoelectron energy from the radiation‐excited Ru‐GNCs to the Ru‐containing hybrid layer. In contrast to the traditional radiation‐triggered activation of prodrugs, such an NSET‐based system ensures that the reactive species in the tumor microenvironment are present in sufficient quantity and are not easily quenched. Additionally, ultrasmall Ru‐GNCs preferably target mitochondria and profoundly disrupt the respiratory chain upon irradiation, leading to radiosensitization by generating abundant reactive oxygen species. Consequently, Ru‐GNC‐directed radiochemotherapy induces immunogenic cell death, resulting in significant therapeutic outcomes when combined with the programmed cell death‐ligand 1 (PD−L1) checkpoint blockade. This NSET strategy represents a breakthrough in designing radiation‐triggered nanoplatforms for metal‐prodrug‐mediated cancer treatment in an efficient and controllable manner.

Funder

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3