Regulating Spin States in Oxygen Electrocatalysis

Author:

Zhang Zhirong12,Ma Peiyu3,Luo Lei12,Ding Xilan3,Zhou Shiming2,Zeng Jie12ORCID

Affiliation:

1. School of Chemistry & Chemical Engineering Anhui University of Technology Ma'anshan Anhui 243002 P. R. China

2. Hefei National Research Center for Physical Sciences at the Microscale Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes Department of Chemical Physics University of Science and Technology of China Hefei Anhui 230026 P. R. China

3. National Synchrotron Radiation Laboratory iChEM (Collaborative Innovation Center of Chemistry for Energy Materials) University of Science and Technology of China Hefei Anhui 230026 P. R. China

Abstract

AbstractDeveloping efficient and stable transition metal oxides catalysts for energy conversion processes such as oxygen evolution reaction and oxygen reduction reaction is one of the key measures to solve the problem of energy shortage. The spin state of transition metal oxides is strongly correlated with their catalytic activities. In an octahedral structure of transition metal oxides, the spin state of active centers could be regulated by adjusting the splitting energy and the electron pairing energy. Regulating spin state of active centers could directly modulate thedorbitals occupancy, which influence the strength of metal‐ligand bonds and the adsorption behavior of the intermediates. In this review, we clarified the significance of regulating spin state of the active centers. Subsequently, we discussed several characterization technologies for spin state and some recent strategies to regulate the spin state of the active centers. Finally, we put forward some views on the future research direction of this vital field.

Funder

National Key Research and Development Program of China

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3