Tris(triazolo)triazine‐Based Covalent Organic Frameworks for Efficiently Photocatalytic Hydrogen Peroxide Production

Author:

Zhang Zhenwei1,Zhang Qi2,Hou Yuxin1,Li Jiali1,Zhu Shanshan1,Xia Hong3,Yue Huijuan4,Liu Xiaoming1ORCID

Affiliation:

1. College of Chemistry Jilin University Changchun 130012 P.R. China

2. School of Engineering University of Warwick Coventry CV4 7AL UK

3. State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology Jilin University Changchun 130012 P.R. China

4. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry Jilin University Changchun 130012 P.R. China

Abstract

AbstractTwo‐dimensional covalent organic frameworks (2D‐COFs) have recently emerged as fascinating scaffolds for solar‐to‐chemical energy conversion because of their customizable structures and functionalities. Herein, two tris(triazolo)triazine‐based COF materials (namely COF‐JLU51 and COF‐JLU52) featuring large surface area, high crystallinity, excellent stability and photoelectric properties were designed and constructed for the first time. Remarkably, COF‐JLU51 gave an outstanding H2O2 production rate of over 4200 μmol g−1 h−1 with excellent reusability in pure water and O2 under one standard sun light, that higher than its isomorphic COF‐JLU52 and most of the reported metal‐free materials, owing to its superior generation, separation and transport of photogenerated carriers. Experimental and theoretical researches prove that the photocatalytic process undergoes a combination of indirect 2e O2 reduction reaction (ORR) and 4e H2O oxidation reaction (WOR). Specifically, an ultrahigh yield of 7624.7 μmol g−1 h−1 with apparent quantum yield of 18.2 % for COF‐JLU52 was achieved in a 1 : 1 ratio of benzyl alcohol and water system. This finding contributes novel, nitrogen‐rich and high‐quality tris(triazolo)triazine‐based COF materials, and also designate their bright future in photocatalytic solar transformations.

Funder

Jilin Provincial Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3