Affiliation:
1. Key Laboratory of Advanced Energy Material Chemistry (Ministry of Education) College of Chemistry Nankai University Tianjin 300071 China
2. Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, and School of Chemistry Tiangong University Tianjin 300387 China
3. Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
Abstract
AbstractAdsorption‐based removal of carbon dioxide (CO2) from gas mixtures has demonstrated great potential for solving energy security and environmental sustainability challenges. However, due to similar physicochemical properties between CO2 and other gases as well as the co‐adsorption behavior, the selectivity of CO2 is severely limited in currently reported CO2‐selective sorbents. To address the challenge, we create a bioinspired design strategy and report a robust, microporous metal–organic framework (MOF) with unprecedented [Mn86] nanocages. Attributed to the existence of unique enzyme‐like confined pockets, strong coordination interactions and dipole‐dipole interactions are generated for CO2 molecules, resulting in only CO2 molecules fitting in the pocket while other gas molecules are prohibited. Thus, this MOF can selectively remove CO2 from various gas mixtures and show record‐high selectivities of CO2/CH4 and CO2/N2 mixtures. Highly efficient CO2/C2H2, CO2/CH4, and CO2/N2 separations are achieved, as verified by experimental breakthrough tests. This work paves a new avenue for the fabrication of adsorbents with high CO2 selectivity and provides important guidance for designing highly effective adsorbents for gas separation.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献