Circularly Polarized Phosphorescence of Benzils Achieved by Chiral Supramolecular Polymerization

Author:

Guang Longyu1,Lu Yi1,Zhang Yifei1,Liao Rui1,Wang Feng1ORCID

Affiliation:

1. Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei, Anhui 230026 P. R. China

Abstract

AbstractIn current approaches for circularly polarized phosphorescent materials, the crystallization of chiral phosphors suffers from poor processability, while integrating them into an amorphous polymer matrix results in unsatisfactory chiroptical signals due to the absence of chirality communication. Here, we have developed an innovative strategy through chiral supramolecular polymerization of benzil phosphors facilitated by intermolecular hydrogen bonds. The inherent film‐forming capabilities of non‐covalent supramolecular polymers obviate the need for an external polymer matrix. The pronounced helical asymmetry of benzil phosphors resulting from chiral supramolecular polymerization leads to enhanced circularly polarized phosphorescence compared to their non‐hydrogen‐bonded counterparts. The circularly polarized phosphorescent signals can be further modulated by varying the location of stereogenic centers or introducing halogen bonding to benzils. Incorporation of platinum(II) phosphor into the benzil supramolecular polymers induces both chirality and triplet‐to‐triplet energy transfer, leading to a change in circularly polarized phosphorescent color from yellow to red. In summary, chiral supramolecular polymerization of phosphors represents a novel and effective approach to circularly polarized phosphorescent materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3