Ionic Nickel Embedded in Ceria with High Specific CO2 Methanation Activity

Author:

Barreau Mathias1,Salusso Davide2,Li Juan3,Zhang Jinming1,Borfecchia Elisa4,Sobczak Kamil5,Braglia Luca6,Gallet Jean‐Jacques78,Torelli Piero6,Guo Hua9,Lin Sen3,Zafeiratos Spyridon110ORCID

Affiliation:

1. Institut de Chimie et Procédés pour l'Energie l'Environnement et la Santé ICPEES UMR 7515 CNRS-Université de Strasbourg 25 Rue Becquerel 67087 Strasbourg France

2. European Synchrotron Radiation Facility, CS 40220 38043 Grenoble Cedex 9 France

3. State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 China

4. Department of Chemistry INSTM Reference Center and NIS Center University of Torino 10125 Torino Italy

5. Faculty of Chemistry Biological and Chemical Research Centre University of Warsaw Zwirki Wigury 101 02-089 Warsaw Poland

6. IOM CNR Laboratorio TASC, AREA Science Park Basovizza 34149 Trieste Italy

7. Laboratoire de Chimie Physique-Matière et Rayonnement Sorbonne Université, Campus Curie, CNRS UMR 7614 4 place Jussieu 75005 Paris France

8. Synchrotron SOLEIL, L'orme des Merisiers B.P. 48, Saint Aubin 91192 Gif-sur-Yvette Cedex France

9. Department of Chemistry and Chemical Biology University of New Mexico Albuquerque NM 87131 USA

10. School of Environmental and Chemical Engineering Shanghai University Shanghai China

Abstract

AbstractCO2 hydrogenation to methane is gaining increasing interest as one of the most promising ways to store intermittent renewable energy in the form of chemical fuels. Ni particles supported on CeO2 represent a highly efficient, stable and inexpensive catalyst for this reaction. Herein, Ni‐doped CeO2 nanoparticles were tested for CO2 methanation showing an extremely high Ni mass‐specific activity and CH4 selectivity. Operando characterization reveals that this performance is tightly associated with ionic Νi and Ce3+ surface sites, while formation of metallic Ni does not seem to considerably promote the reaction. Theoretical calculations confirmed the stability of interstitial ionic Ni sites on ceria surfaces and highlighted the role of Ce‐O frustrated Lewis pair (FLP), Ni‐O classical Lewis pair (CLP) and Ni‐Ce pair sites to the activation of H2 and CO2 molecules. To a large extent, the theoretical predictions were validated by in situ spectroscopy under H2 and CO2 : H2 gaseous environments.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3