Metal–Organic Framework Supported Low‐Nuclearity Cluster Catalysts for Highly Selective Carbon Dioxide Electroreduction to Ethanol

Author:

Shao Bing12,Huang Du3,Huang Rui‐Kang4,He Xing‐Lu1,Luo Yan1,Xiang Yi‐Lei5,Jiang Lin‐bin5,Dong Min1,Li Shixiong6,Zhang Zhong7,Huang Jin1ORCID

Affiliation:

1. Pharmaceutical College Guangxi Medical University Nanning 530021 P. R. China.

2. Department of Chemistry Southern University of Science and Technology Shenzhen 518055 P. R. China

3. College of Chemistry and Chemical Engineering Guangxi Minzu University Nanning 530006 P. R. China

4. Research Institute for Electronic Science Hokkaido University Sapporo 001-0021 Japan

5. School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 P. R. China

6. School of Mechanical and Resource Engineering Wuzhou University Wuzhou Guangxi 543003 P. R. China

7. School of Chemistry and Pharmaceutical Sciences Guangxi Normal University Guilin 541004 P.R. China

Abstract

AbstractIt is still a great challenge to achieve high selectivity of ethanol in CO2 electroreduction reactions (CO2RR) because of the similar reduction potentials and lower energy barrier of possible other C2+ products. Here, we report a MOF‐based supported low‐nuclearity cluster catalysts (LNCCs), synthesized by electrochemical reduction of three‐dimensional (3D) microporous Cu‐based MOF, that achieves a single‐product Faradaic efficiency (FE) of 82.5 % at −1.0 V (versus the reversible hydrogen electrode) corresponding to the effective current density is 8.66 mA cm−2. By investigating the relationship between the species of reduction products and the types of catalytic sites, it is confirmed that the multi‐site synergism of Cu LNCCs can increase the C−C coupling effect, and thus achieve high FE of CO2–to–ethanol. In addition, density functional theory (DFT) calculation and operando attenuated total reflectance surface‐enhanced infrared absorption spectroscopy further confirmed the reaction path and mechanism of CO2–to–EtOH.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Zhuang Autonomous Region

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3