High‐Throughput Diversification of Complex Bioactive Molecules by Accelerated Synthesis in Microdroplets

Author:

Huang Kai‐Hung1ORCID,Morato Nicolás M.1ORCID,Feng Yunfei1ORCID,Cooks R. Graham1ORCID

Affiliation:

1. Department of Chemistry Purdue University West Lafayette IN USA

Abstract

AbstractLate‐stage diversification of drug molecules is an important strategy in drug discovery that can be facilitated by reaction screening using high‐throughput experimentation. Here we present a rapid method for functionalizing bioactive molecules based on accelerated reactions in microdroplets. Reaction mixtures are nebulized at throughputs better than 1 reaction/second and the accelerated reactions occurring in the microdroplets are followed by desorption electrospray ionization mass spectrometry (DESI‐MS). Because the accelerated reactions occur on the millisecond timescale, they allow an overall screening throughput of 1 Hz working at the low nanogram scale. Using this approach, an opioid agonist (PZM21) and an antagonist (naloxone) were diversified using three reactions important in medicinal chemistry: sulfur fluoride exchange (SuFEx) click reactions, imine formation reactions, and ene‐type click reactions. Some 269 functionalized analogs of naloxone and PZM21 were generated and characterized by tandem mass spectrometry (MS/MS) after screening over 500 reactions.

Funder

Air Force Office of Scientific Research

National Center for Advancing Translational Sciences

Eastman Chemical Company

ACS Division of Analytical Chemistry

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3