High Gas Permeability in Aged Superglassy Membranes with Nanosized UiO‐66−NH2/cPIM‐1 Network Fillers

Author:

Qiu Boya1,Yu Ming23,Luque‐Alled Jose Miguel45,Ding Shengzhe1,Foster Andrew B.2,Budd Peter M.2,Fan Xiaolei16,Gorgojo Patricia145ORCID

Affiliation:

1. Department of Chemical Engineering The University of Manchester Oxford Road Manchester M13 9PL UK

2. Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK

3. Department of Chemical Engineering The University of Melbourne Melbourne VIC. 3010 Australia

4. Instituto de Nanociencia y Materiales de Aragón (INMA) CSIC Universidad de Zaragoza Mariano Esquillor 50018 Zaragoza Spain

5. Departmento de Ingeniería Química y Tecnologías del Medio Ambiente Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain

6. Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute University of Nottingham Ningbo China 211 Xingguang Road Ningbo 315100 China

Abstract

AbstractSuperglassy membranes synthesised by polymers of intrinsic microporosity (PIMs) suffer from physical aging and show poor gas permeance over time, especially thin membranes, due to the fast rearrangement of nonequilibrium polymer chains. Herein, we constructed a novel PIM‐1 thin film nanocomposite membrane (TFN) using nanosized UiO‐66−NH2 (≈10 nm)/carboxylated PIM‐1 (cPIM‐1) as the composite filler. Unlike conventional fillers, which interact with the polymer only via the surface, the UiO‐66−NH2/cPIM‐1 forms a stable three‐dimensional (3D) network intertwining with the polymer chains, being very effective to impede chain relaxation, and thus physical aging. Nanosizing of UiO‐66−NH2 was achieved by regulating the nucleation kinetics using carbon quantum dots (CQD) during the synthesis. This led to increased surface area, and hence more functional groups to bond with cPIM‐1 (via hydrogen bonding between −NH2 and −COOH groups), which also improved interfacial compatibility between the 3D network and polymer chains avoiding defect formation. As a result, the novel TFN showed significantly improved performance in gas separation along with reduced aging (i.e. ≈6 % loss in CO2 permeability over 63 days); the aged membranes had a CO2 permeance of 2504 GPU and ideal selectivity values of 37.2 and 23.8 for CO2/N2 and CO2/CH4, respectively.

Funder

Engineering and Physical Sciences Research Council

Agencia Estatal de Investigación

European Social Fund

China Scholarship Council

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3