Affiliation:
1. Chemistry Department University of California, Irvine Irvine CA 92697–2025 USA
Abstract
AbstractTrimethylsilyl chloride (TMSCl) is commonly used to “activate” metal(0) powders toward oxidative addition of organohalides, but knowledge of its mechanism remains limited by the inability to characterize chemical intermediates under reaction conditions. Here, fluorescence lifetime imaging microscopy (FLIM) overcomes these prior limitations and shows that TMSCl aids in solubilization of the organozinc intermediate from zinc(0) metal after oxidative addition, a previously unknown mechanistic role. This mechanistic role is in contrast to previously known roles for TMSCl before the oxidative addition step. To achieve this understanding, FLIM, a tool traditionally used in biology, is developed to characterize intermediates during a chemical reaction—thus revealing mechanistic steps that are unobservable without fluorescence lifetime data. These findings impact organometallic reagent synthesis and catalysis by providing a previously uncharacterized mechanistic role for a widely used activating agent, an understanding of which is suitable for revising activation models and for developing strategies to activate currently unreactive metals.
Funder
National Institutes of Health
National Science Foundation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献